Project Fabrication, Design Ideas, and Other Good Stuff

Prof. Greg Kovacs

Department of Electrical Engineering

Stanford University

Time to use this...

To design this...

Reminder: The Design Process

- Definition of function what you want.
- Block diagram translate into circuit functions.
- First Design Review.
- Circuit design the details of how functions are accomplished.
 - Component selection
 - Schematic
 - Simulation
 - Prototyping of critical sections
- Second Design Review.
- Fabrication and Testing.

Electronic System Considerations

- Noise and interference.
- Prototyping the circuit.
- Packaging.
- Labeling + graphics for the prototype.
- Demonstration strategies.
- Thoughts on manufacturing.

Microsoft Corporation, 1978

Thermal Noise

Thermal (Johnson) Noise - caused by random motion of electrons due

to thermal agitation...

Every resistor generates thermal noise!

$$V_{noise}(RMS) = \sqrt{4kTR\Delta f}$$

$$V_{noise}(RMS) = 1.27 \times 10^{-4} \sqrt{R} \quad \mu V/\sqrt{Hz}$$

• A 10K Ω resistor at room temperature produces 1.8 μ V of RMS thermal noise over the 20KHz audio band....

6

Shot Noise

· SHOT NOISE

- since currents are quantized, their flow is not entirely uniform...
- this causes Shot noise....
- a 1 Amp current has 57 nA of RMS fluctuation (NOT TOO BAD!)

1/f Noise

- 1/f ("Flicker") Noise
 - this noise is caused by fluctuations in the actual VALUES of the components (such as the resistance of a resistor) and is dependent upon the applied voltage.
 - it is expressed in "volts per volt"!
 - therefore, it depends on the TYPE of component used!
 - generally, it is also very small, on the order of 10 nV to 1 μ V

EXAMPLE: RESISTORS (from Horowitz and Hill) FLICKER NOISE OVER ONE DECADE OF FREQUENCY AT 1 V

Carbon-composition $0.10~\mu\text{V}$ to $3.0~\mu\text{V}$ Carbon-film $0.05~\mu\text{V}$ to $0.3~\mu\text{V}$ Metal-film $0.02~\mu\text{V}$ to $0.2~\mu\text{V}$ Wire-wound $0.01~\mu\text{V}$ to $0.2~\mu\text{V}$

Interference

- INTERFERENCE
 - noise from outside of your circuit!
 - 60 Hz pickup is the biggest problem in most situations
 - RF pickup is also bad!
 - FOR REAL PRODUCTS, the FCC makes YOU worry about how much interference YOU cause in other products!!!

• REMEMBER... IF THE NOISE IS AMPLIFIED, THE PROBLEM GETS A LOT WORSE!

What to Do About EMI

- Metal packaging, if properly grounded and interconnected, is very effective.
- Conductive plastics and paints are also useful.
- Careful attention to signals, connectors, and wires entering or exiting the box is critical:
 - Shielded cables.
 - Ferrites.
 - Capacitors.
- Verification of compliance with FCC and international EMI specifications usually handled via consulting firms.

FLUKE VoltAler

EMI Screens

The Original "Hotmail"

Courtesy of Mark Shughart, Spr 05 - 06

12

HP3561A Shielding

Note that even the fan is shielded using a metal mesh.

HP3561A Insides

Prototyping Your Circuit

- For EE122, the high-frequency plug-boards are adequate in most cases.
- Usually, hand-soldered prototypes are best for analog circuits and most closely simulate final performance of a printed-circuit board.
- Ground-planed boards are essential for precision, low-noise analog circuits.
- Proper power decoupling is ABSOLUTELY KEY one 0.1 µF capacitor per supply rail (to ground)
 per chip, located as close as possible to the
 supply pin(s).

Always True - NO!!!

Figure F3. No

Source: Linear Technology AN-47.

"No" Is Generally Correct Here...

Figure F1. No

Point-To-Point Soldered

Point-to-Point Williams Style

Source: Linear Technology AN-47.

Milled Prototype PCB

Surface Mount Components

Commercial PCB

Commercial Options

- Many quick-turn, low-volume, low-cost PCB options.
- Example: Advanced Circuits, ExpressPCB, Batch PCB
- Free CAD tools online (for Windows and Mac): Eagle, PcbArtist, gEDA, ExpressPCB, Ultiboard

Very Basic Layout Tips

· Placement:

- Like a Puzzle! 1-2 layers for components.
- Group components on board the same way you do in a schematic.
- Want to avoid crossing of rats/nets/wires/traces (less vias).
- Sets up your routing difficulty.
- Leave enough space between components.

Routing:

- A cool mess of wire connections, 1-16 layers for routing (we use only two for cost reasons).
- Avoid 90° turns, 45° better.
- Larger trace width for power rails, smaller for signals.
- DRC checks.
- Auto-routing quality varies may want to avoid it for now.

Look online or ask us for help/advice!

Unrouted pcb

Routed pcb

VS

Grounding and Supply Distribution

- Power supply voltages should be distributed using "bus-lines" on the board - on a printed circuit board, these are typically heavy (wide) traces.
- Grounding is critical, particularly in mixed-signal systems.
- Digital and analog grounds should be kept SEPARATE, coming together at ONLY ONE point the power supply.
- Failure to observe this can result in extremely hard to debug ground-related problems.

Layout for High-Speed Circuits

Thermal Management

Temperature Measurement

Packaging Your Circuit

- For EE122, building your project in the highfrequency plug-board will be fine.
- Of course, you are encouraged to be creative about packaging.
- Old food containers, recycled instruments, or even hand-made boxes are relatively easy to organize.
- Humor is always welcomed!

Example Prototype Packages

HP5334A - Compartmentalization

Safety - Ground-Fault Interrupters

Fuses

Ergonomics

"Classic" Cessna 172

Modern Cessna 172

HP970A - 1972

- Hand-held digital multimeter.
- Integrated rechargeable batteries.
- LED display could invert to suit viewing angle.
- Ergonomic design!

HP970A - 1972

Labeling and Graphics for Your Circuit

- A good drawing tool such as Freehand™, Illustrator™, Corel Draw™, or many others can be used to make precise front-panel layouts with a laser printer.
- The layout can be printed on sticky-backed transparency material that can be peeled off and applied to the frontpanel of your package.

Scanned Front-Panel for Precise Fit

Overlay

Finished Prototype

Minor Pitfalls...

Commercial Options

- Fast-turn, low-cost beautiful front panels:
- http://www.frontpanelexpress.com/
- Free CAD tool (for Windows).

Low-Cost Injection Molding

- Traditionally very expensive (mold costs), approaches are emerging that allow lowvolume prototyping inexpensively.
- Example (prices starting ≈ \$2k): http:// www.protomold.com/

Demonstration Strategies

Demonstrations are intended to:

- Demonstrate the technical features of a product.
- Excite potential customers (or graders!).
- Sell hardware/software (if in the real world).

Good demos are:

- Concise attention spans are limited.
- Clear no confusing stuff.
- Organized progress clearly from front-end to back-end.

Suggested strategy:

- Introduce team.
- Explain purpose of device.
- Explain how it works.
- Demonstrate it working.
- Summarize.
- Ask if there are questions.

THE FINE ART OF MARKETING....

Thoughts on Manufacturing

- In production, circuits are optimized for cost.
- In some domains (e.g., consumer), performance can be traded off quite freely for savings.
- In other domains (e.g., precision instruments), peformance goals tend to be fixed.
- "Discretes are free" true to some extent.
- Automated, low-cost assembly is typical.
- Economies of scale rule.
- Testing and rework strategies are valuable.

PRODUCTION: COST VS. QUANTITY

